IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Exact solution of the one-dimensional anisotropic t- J model: ground-state properties and

the excitation spectrum

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys.: Condens. Matter 8 8363
(http://iopscience.iop.org/0953-8984/8/43/027)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.207
The article was downloaded on 14/05/2010 at 04:24

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matt8r(1996) 8363-8378. Printed in the UK

Exact solution of the one-dimensional anisotropid—J
model: ground-state properties and the excitation spectrum

R Satg

Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan
Received 2 April 1996, in final form 16 July 1996

Abstract. The one-dimensional anisotropieJ model was exactly solved using the Bethe

ansatz We first discuss the effect of anisotropy on the ground-state properties. We find a
continuous phase transition induced by a magnetic field. The low-lying (spin and charge)
excitation spectrum is obtained for various fillings. According to the anisotropy, the model has

massive or massless modes for spin excitations. At half-filling, the model reduces to the spin-

% antiferromagneticXXZ-model. We calculate the correct excitation continuum whose lowest

mode is lower than that obtained by des Cloizeaux and Gaudin. Charge excitations are massless
for any value of the anisotropy.

1. Introduction

In recent years the-J model [1, 2] has been intensively studied as a candidate for a model
for high-T,. superconductivity. It is argued [3] that strongly correlated electronic systems in
one and two dimensions may share common aspects, so it is crucial to obtain exact results
in one dimension. The one-dimensional (1D) isotropid model at its ‘supersymmetric’
point is exactly solvable using the (nested) Be#lmsatz[4, 5] and various properties of
the model have been studied by many authors [6-11]. Even more recently, several versions
of the solvable anisotropic—/ model with certain quantum group symmetries have been
considered [12-17]. One characteristic property of the anisotmepicmodel is that the
superconducting correlation dominates other correlations [14, 16]. This property is not
present for the usual (isotropic) supersymmetri¢ model [9] (see also [18]). In this paper
we will study the 1D anisotropic supersymmetric/ model which is exactly solvable
using the Bethansatz In particular, we discuss the ground-state properties in relation to
anisotropy and magnetic field, and also obtain the low-lying (spin and charge) excitation
spectrum.

We consider the anisotropie-/ model with sp}(2, 1) supersymmetry on a 1D lattice
of L sites, which is defined by the Hamiltoniafi,(j) denotes neighbouring sites)

. J : i
HO — 7){_; Z (cilﬂcjg + HC) + 2 Z Citgcifoc}—ncjf’

(i.j),o (i,j),o

J _
-5 Z(q Yy + qnmnwu)}P (1)
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or, in a more transparent form,

-1
q9—q 1
HO P{—t > (c| ¢js +HO) — T > 58] = S%nj)
(i.j).0 (i.j)
—1 -1
C ey 414 . 1 q9+q
+J ;[555; + 58+ (S,?S_,. — 4n,-n,->“7> + T ) i
) i
(2)
Here cjo (cjo) is the creation (annihilation) operator for electrons & 1, |), and
nj=nj +nj, (nj, = c_;acj[,) denotes the number operator. The projedorestricts the
Hilbert space to that of no double occupancy. One should note that the Hamiltaflan
explicitly breaks the time-reversal symmetry. The paramgt@etermines the anisotropy of
the model. At half-filling the model reduces to the séir)(XZ—modeI (up to an irrelevant

constant term). We shall consider the model in a magnetic fielthd with a chemical
potential :

h
H=HO?— EZ(MT —ni¢)+ll«zni. 3)

In the isotropic limitg — 1, the HamiltonianH with © = —J reduces to the usual
(isotropic)r—J model [8]. The anisotropic—J model is exactly solvable wheh = +2r. It

is convenient to parametrizg in order to specify the region (hyperbolic or trigonometric)
of anisotropy of the model as follows:

A_q+q1_{coshy @=€.A>1)

; 4

2 cosy (g =¢€7,|A] <. )
In the trigonometric region, the Hamiltonidd©® (and alsak) is not hermitian; however, it
possesses real eigenvalues [12]. In what follows we concentrate on the regionAwhede
which is of physical relevance. We also set 1 andJ = 2, i.e., we treat the model with

‘antiferromagnetic’ interaction.

2. Ground-state properties

In this section we discuss the ground-state properties of the anisotrapimodel (3) with
J = 2t in relation to the anisotropy and magnetic field. The model can be diagonalized
using the Bethensatz[19-21]. As is the case for the usual supersymmetrif model
[10], we have three possible types of Betlugsatzequation, depending on what kind of
‘grading’ we choose. It is convenient to employ the so-called Sutherland representation
[5] (where we regard the state with all of the sites occupied by up-spin electrons as the
background (reference state)), since no complex roots of the Betbatzequations are
present in the ground states and low-lying excited states at zero temperature.

The Bethe ansatz equations with periodic boundary conditions in the Sutherland
representation take the form (fér even)

[F(A_,- — iy/Z)]L _ llL[ F(j — Ao +iy/2) lﬂ[ F(y — M —iy) 1<i<M
F(hj+iy/2) S A F(y— Ay —iy/2) (5 FOy — A +iy) SO

(5)
M .
l—[ F(Ay — M — !y/2) _ 1<a <N, ©)
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whereN; (N,) is the number of up-spin (down-spin) electrong, is the number of empty
sites, andM = N, + N,. The number of electrons is denoted By (= N; + N;). The
function F(«) is defined by

{sinhoe (A > 1)
F(a) =

sina O<A<]. 0

The total energy and momentum are written in terms of the solutions of (5) and (6) as

M
h
E=2f(n)L =) 80y) = 5(Ny = Np) + N, ®)
j=1
= (L - 1)n—|f:| (F(k Wz)) 9)
F(\j+iy/2)

where the functions («) andg(«) are respectively defined by

coshy (A>1

= 10
F cosy 0<A<]. (10)
2sint?
o esinmty (A>1)
coshy — cos 2
gla) := . (11)
2sirfy O<A <D
cosh 2 — cosy Sesb

Taking the logarithm of the equations (5) and (6), we arrive at

LO(2)j) = 2n —Ze(za —Aa))—i—Z@(A — ) (12)
a=1 k=1
Zmzma — M) = 21, (13)

where 6(a) = 2arctan[cotky /2) tanhe]. The integers or half odd integes and J,
characterize the eigenstates. In the thermodynamic limit, the continuous dep§hties

and p@(A) of the distributions of the (spin and charge) rapidities for the ground state are
obtained as the solutions of the following set of coupled integral equations (superdgyipt *
indicates the ground state):

“”(A)—SZ(AH/ dn' S1( — ,\)p§°>(,\)+/ dA” Sz — A)p@(A))

(14)
PO (A) = f A Sa(A — 2P0 V)
with
S1(@) = —p(a, 2y) So(a) = d(a, y) (15)
where the functionp («, v) is defined by
1 sinhy
A A (A >1)
blay) = yi cosh;;i; COS & (16)
L4 O< A <1).

7 cosh2x — cosy
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The integration limitsQ and B determine the densities @ O, B < n/2 for A > 1 and
0<Q0,B<xfor0Og A <1):

0
/ di @0 =M/L=(N, +N)/L=m=n, +n, (17)
-0
B
/ dA @A) =N,/L=(L—N,)/L=n,=1—n,. (18)
-B
The magnetization and the ground-state energy are given by
1 0 1 (8
o=58,/L=">— / dr p@) + = / dA p2(A) (19)
2 Jy 2) 5
0
e=E/L=27()~ [ dhg0p®) ~ ho+ . (20)
-0

Note that at half-filing these Betha&nsatzequations reduce to those for the séir)(XZ—
chain [22]:

1¢ ) 242
= 2 ;(aixdiﬁrl +070}y1 + Aofoiy) 1)

({o?} (@ = x, y, z) are the Pauli matrices) with the same valuetofor y).

To express several physical quantities as implicit function@ @hd B, we employ the
‘dressed-charge-matrix’ formalism [23, 24]. We first rewrite the equations (14) as a matrix
integral equation of the form

PO0, A) = pP (L, A) + K(h, Az 2 A)p@ (W, A) (22)
with
© _ (PP © _ o S2()

The integral-kernel matrixX is defined by
’ oAt Ki(h = 2')  Kip(h — A') S1(h =) Sa(h — A)
K, A; ), A) = ; V) = ; 24
( ) (Ku(A—A) Kzz(A—A)> (SZ(A—M 0 ) 9

whose elements operate on a scalar functlgn) as

Kop(L — M)AV = gy Kop(h —A)AQ) a=Q ar = B. (25)

—ag

The dressed charge matrti&(i, A) and the dressed energy (in zero magnetic fie(d) A)
[23, 24],

= _ [ §11(0)  &12(A) _ [ a®
““’A)_<521(A) szz(A)> E(A’A)—<SZ(A)> (26)

also obey equations similar to (22) with the respective inhomogeneous terms

Eo(r, A) = <é (1)) so(h, A) = (jg;fg) = (‘go(’\)) (27)

In the spirit of Woynarovich and Penc [25], we can derive the expressions for the
magnetic fieldr, the chemical potentigk, and the magnetic susceptibility as functions
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of O and B (for a detailed account of the formalism, see [25, 26, 11]). The results are
—£1(0)822(B) + £2(B)§12(Q) (28)

h(Q, B) = d"
etz2(0, B)
_ /(Q)[26(B) — £22(B)] — £2(B)[2611(Q) — £12(Q)]
Hen= 2detE(Q, B) (29)
(0. B) = "M@ E2B)° + va(B)(612(0))° (30)

2detE(Q, B)
The factorsv;(Q) andvo(B) in (30) are the Fermi velocities (timesr? [24].

1 -
* O
c
> i ad
3 0.9 o
[} 3
© Re
5 i
3 2
(0]
T 08 3
g o
£
o
0.7 F A=COS’Y
| | | ! 2/3
0 w4
Y

Figure 1. The optimal (ground-state) electron density as a function of the anisotropy
in the grand canonical ensemble with= —2f(y) = —2cosy (in the trigonometric region,
A =cosy). nf =2 fory = 3z (A=0).

In what follows in this section, we will consider the model in the grand canonical
ensemble for convenience. We first investigate the effect of anisotropy on the ground state
in zero magnetic field @ = /2, or co). From (14)—(20) we can determine the optimal
electron density:} for which the model has the lowest energy among all fillings when a
value of the anisotropy is given. Here we sett = —2f(y) for comparison with the
isotropic case. We obtained that

ny=1 for A >
n, #1 for A <

(31)

NI NI

(see figure 1). That is, fon > % the ground state of the anisotropieJ/ model is that
of the spin% XXZ-model with the same value ok (or y). The present result includes
the result for the isotropic—J model ¢ = 0) where the half-filling case gives the lowest

energy among all fillings [8]. AAA — 0 (y — %n in the trigonometric region), the ground
state approaches the symmetrical peint=n, = n, = %
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chemical potential p

v=0 (isotropic)

dw/dng

0 ! ! ! !
0 0.2 0.4 0.6 0.8 1
electron density ng

Figure 2. The chemical potentigl and its derivative versus electron density for various
values of the anisotropy in the hyperbolic region4 = coshy).

Both the chemical potential and its derivative with respect to the electron dendity
different values ofy in the hyperbolic region4 = coshy) are shown in figure 2. We set
h = 0 here. At half-filling B = 0) we explicitly obtain

M(’; o) — sinhy [1 +23 - tanl’(my)):| . (32)

m=1

We can perform a similar calculation in the trigonometric reginn={ cosy) and have

[~ y siny
(o0, 0) = /,oo dor cosh(ar)(cosh2y ) — cosy)’ (33)

The compressibility« becomes larger as the anisotropy becomes stronger, sircex
du/dn,.. This is compatible with the fact that the region of superconductivity is larger for
stronger anisotropy [16].

Consider next the magnetic property of the model. From (28) and (30) we can obtain
the inverse magnetic susceptibiligy ! as a function of the magnetic field For A > 1
(including the isotropic—J model), the susceptibility (h) as well as the magnetization
curve are the same as those of the s})mxz-chain (theXXX-chain forA = 1). ForA < 1,
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(a) osF

y=2n/7
(A=cosY)

magnetization

] : ]
2 heo 3
magnetic field h

o

~

e _

o (9,3
T ]

inverse susceptibility !
[4:]
T

0L, i ' !
0 1 hey 2 he2 3
magnetic field h

Figure 3. Magnetic properties in the grand canonical ensembleAfes cosy with y = 27/7.
(a) The magnetization curve. Curve A is given by that for the sector With= 0, curve B
for the sector withV,, Nj, # 0 and curve C for the sector witN, = 0, respectively. (b) The
inverse magnetic susceptibiliy~! as a function of magnetic field. The transition points are
he1 = 1.67... andhcg =2.46....

on the other hand, we found a magnetic phase transition. The magnetization curve and the
inverse susceptibility ~1(h) for A = cog27/7) are shown as an example in figure 3. In

this case, the high-field curve (curve A in figure 3) is obtained by solving the Betbatz
equations (14) with the constraint, = 0. The low-field curve (curve C) is obtained with

the conditionN, = 0 and is the same as a part of the magnetization curve of the%spin—
XXZ-chain. For moderate values a&f (curve B) we have to solve the equations under
the conditionN, N, # 0. We have then three different phases according to the range of
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]

inverse susceptibility !

! i I 1 I | 1 L
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Figure 4. Magnetic properties for various fixed electron densitigs(A = cosy with
y = 27/7). (a) The magnetization curve versush. (b) The inverse magnetic susceptibility
x 1 as a function of the magnetic field

the magnetic field. The phase transition is of second order since the magnetization curve
is continuous and the magnetic susceptibility shows finite discontinuity at the transition
points 4.1 and h.,. We estimate the exact values bf; and A, ash. = 1.67... and
hep =246.... For0< A < % the low-field part of the magnetization corresponding to
the curve C in figure 3 disappears, so we have only one phase transition point.

To complement the above description, we show in figure 4 the magnetization curve
and the magnetic susceptibility when electron densities are fixed. The saturatioh, field

explicitly given by i, = (1+ A)sirf(rn./2). At half-filling we reproduce the results for
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the spin% XXZ-chain. The magnetic susceptibility at magnetic saturation is divergent only
at half-filling.

3. The excitation spectrum

In this section we study the low-lying excitations over the ground state. Bares, Blatter and
Ogata calculated the excitation spectrum of the usual (isotrepit)model [8]. Below we

will make a similar analysis on the anisotropie/ model. Calculations are simplified by
taking the dressed-charge-matrix formalism [23, 24]. Here we are mainly interested in the
hyperbolic region wheré\ > 1. We find a notable fact in this region (in the trigonometric
region 0< A < 1, the results are rather similar to those for the isotropic model). We
calculate the excitations with the number of electrons fixed. We asguewen and: = 0.

3.1. Spin excitations

Spin excitations are obtained by varying the sequefigein (12) from its ground-state
configuration. Following Faddeev and Takhtajan [27], we have two types obhigsical
(spin-wave-type) excitation. One of them is constructed by having an even numvbef 2
‘holes’ in the distribution of the.-rapidities, denoted by real numbers (j = 1,2,...,2N)
which correspond to the holdg;,} in the sequencél;}. The total spin of this excitation

is S =S87,, =N and we have spin-multiplet excitations. In the thermodynamic limit, we

tota

obtain a set of coupled integral equations:

0 B
pe(3) = S22 + / ' S100 — Moy (1) + / dA’ S50 — A)pe(A))
-0 —B
=7 2 80— (34)
=

0
pe(A) = / dd” Sa(A — A)ps (1)
-0

where the functions$; (@) andS,(«) are given in (15). At half-filling these equations reduce
to those for the spir%— XXZ-model. We define the ‘orderf/L’ change of the continuous
root densities:

o, A)/L = (Ul(k)/L> (s = pP)

o2()/L) (pc(x) - p£°>(x>> '
From the equations (14) and (34) we can write a set of coupled integral equations for
oA, A) as

oA, A) =W, A)+ KO, A; A, AoV, A) (35)
with

2N
WO A) = (wm) _ (—;m —Ajh)) _ (36)

Wo(A) 0

The integral-kernel matrixX is given as (24).
The excitation energy is calculated to be

(@) B
€= L{ f , dr 01 (M) (os(X) — p@ (1)) + / dA g02(A)(pe(A) — p£°><A>)}
_ —B
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2 [ 2 ag
= Z/ dite €0a(a)Ou(ia) = Zf dite €a(pa)Wq
a=1"Y —du a=1"Y ~du

2N
- Z e1(Min). (37)
i1

The momentum of the excitation (measured from the ground state) is given by

2N 2N
b4 0) 2 2
=~ (L +vN} ——Elizj:k——EI,-,
p L( VN,™) Li=1 h VKF Li:ll

2N

)\/lx
= +vkp — 27 Z / dr p@ ) (mod 2r) (38)
j=170

wherev = 0 for evenN andv = 1 for odd N. The last equality in (38) is valid to
order L. The effective Fermi momentum is defined by = nn./2. At half-filling we
reproduce the expression for the contribution from each hole, which is obtained for the
spin XXZ-model [28]:

2K
el = 5 sinhy dn(k, k) (39)

b4 T

b4 2K\ b4 b4
in the hyperbolic region4 = coshy) and
7 siny

= 41
€®) y coshmA/y) (41)
p(A) = —% + arctan[sinh( /)] —00 <A <00 (42)

in the trigonometric region = cosy), respectively. HereK is the complete elliptic
integral with modulusk of K’/K = y/x. Notice thate(+n/2) > 0 (i.e., massive) for
y # 0 in the hyperbolic region ane(+o00) = 0 (i.e., massless) in the trigonometric region.
Let us consider the simplest casg & 1), i.e., the spin-triplet excitation. In this case

we have a two-parameter excitation:

€A, Azn) = €(hun) + €(Awp) (43)

Pan, A2n) = p(Au) + p(Aan) - % < Awps Aoy < % (44)
The triplet excitation spectra for various fillings in the hyperbolic regian= coshy with
y = 2) are shown in figure 5. We have here massive spin excitation modes with non-linear
dispersion, whereas for the usual/ model we have the massless excitation mode with
quasi-linear dispersion [8]. At half-filling (i.e., for thEXZmodel), notably, we find a
spin excitation mode lower than that obtained by des Cloizeaux and Gaudin [29]. They
calculated the triplet excitations in the same spirit as des Cloizeaux and Pearson [30] who
treated the spir% isotropic HeisenbergX X X-) model. The des Cloizeaux—Gaudin mode
is given by [28]

2K .
e(p) = = sinhy/1—k?cogp  0<p<2rn (45)
b

which is obtained by eliminating, from (43) and (44) withiy, fixed at+mz/2. As is
explained by Faddeev and Takhtajan [27], this family of states is a special one-parameter
subfamily of two-parameter states. Itis true that the energy and the momentum of excitations
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are given additively by those of the individual holes with the dispersion of the same form
as (45) but with 0< p < 7. However, the energy(p) is an implicit function of the
momentum and the lowest excitation moded necessarily given by (45) if the excitation

has a non-linear dispersion. (The des Cloizeaux—Gaudin spectrum was previously criticized
by Ishimura and Shiba [31] using the perturbation theory.) In the present caseu¢he
lowest excitation mode near = 0 (and 2r) is given by

2K
e(p) = == sinhy [2 1—k2co§§ - \/1—k2} 0<p<2r (46)
T

instead of (45) [32]. This form of the dispersion law is obtained by letipg= Ao, = A;,

and eliminatingh;, from (43) and (44). Note that (45) and (46) give the same result for the

sound velocity. In the isotropic limit — 0, equation (45) gives the des Cloizeaux—Pearson

modee(p) = m|sinp|, while (46) gives the dispersian(p) = 2 sin(p/2) that is the upper

bound of the continuum of the triplet excitation of the séimisotropic) Heisenberg model.
Spin excitations of the second type are constructed by making a state Mith?Zholes

and the only one ‘string’ of length (an n-string [33, 34]):

)nn,j=)»s+ig(”+1_2j) j=1...,n (47)
The centre), of the string is not an independent parameter and is determined at arbitrary

filling by the condition (neglecting the terms of ordetr])

)
N/‘I

W
LO(hg) = ) [6a-1Q0k — 1)) + 001120 — )] + Y On(Ay — A) (48)
j=1 a=1

where M’ = N” + N\° — N (superscript ‘(0)" indicates the ground state) ahda) =
2 arctan[coth%yn) tanha]. For the excitation of the present type the Be#imsatzequations
in the thermodynamic limit take the form

o B
po(3) = Sa(3) + / . S100 — Moy (1) + / dA’ S50 — A)pe(A))
-0 —B

=7 D00 = ki) = L (TiaGo— &) + Tuga G = 1) (49)
j=1
0 1
pe(A) = / AU Sz(A = M)pu(X) + L Tk = 1)
-0

where the inhomogeneous teff(«x) is given by
1 sinhny

@) = 7 coshny — cog2a)’ (50)
Defining
2N
WO A) = ( Py (2) ) {280 =) = Taalh =) 4 TG 1) (51)
Wo(A) j=1
Tn()\ - )‘S)

we have a set of equations similar to (35). It then follows that the excitation energy is given
by

2 g 2N -2
€=e0(h)+ ) f Aita £a (i)W, = —&s(he) = Y £2(hjn) (52)
a=1"Y ~da j=1
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() Ne— 0

20

excitation energy

10 i | 1 !
0 i 2n
momentum
(b) ne = 0.33
18 |-
16
>
2
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()
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©
X
)
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2k 4kg 2n-4kg 2n-2kg
1 | I
0 T 2n
momentum
Figure 5. Spin excitations (triplet) for various electron densities The effective Fermi surface
is atkp. The anisotropy isA = coshy with y = 2. The continua are obtained by calculating
the two-parameter excitations (43) and (44). The resulzfoe 1 gives the excitation spectrum
of the spin% XXZ-chain. Forn, — 0 the free-particle triplet excitation spectrum is reproduced.
where

2sintf ny
coshny — cog2))

€0s ()\v) = (53)
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Figure 5. (Continued)

is the ‘bare’ energy of the:-string, ande;(A;) denotes the dressed energy of the string
which is defined by

2sintf ny ¢ ,d , , ,
& (o) = ~ coshiy — cos2a) /_Q dx a[gn—l(z()L =)+ 6,41(200 — A))]er (1))

B
+ / dA T,(0 — A)ea(A). (54)
-B
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It is easy, using the integral equations K1) ande>(A), to show thats;(A;) = 0, i.e.,

the string has no contribution to the energy of excitation. Thus, the excitation energy is just
the same as that of an excitation witlv 2- 2 holes only. Similarly, we can also show that

we have the same expression for the momentum of excitation as (38)Muigplaced by

N —1. The quantum numbers of the spin are found tbe S = N —n. FOrN =n =2

we have the spin-singlet excitation which has the same energy and momentum as those of
the spin-triplet excitation of the first type considered above.

Ne™ 0

04

0.2

energy

excitation

04 |
02 I
K 2kg
0 i ! i
0 b1 2n
momentum

Figure 6. Charge excitations (particle—hole) for various electron densitiesThe effective
Fermi surface is at&-. The anisotropy isA = coshy with y = 2. The continua are obtained

by calculating the two-parameter excitations (58) and (60), except for in the two limiting cases
n. — 0, 1. In the low-density limitz, — 0, only the ‘hole’ part of the spectrum is present. For

n. — 1, on the other hand, only the ‘particle’ part survives.

3.2. Charge excitations

Keeping the number of electrons fixed, we obtain the holon—antiholon (particle—hole)
excitation which is constructed by varying the distribution af leaving the spin
configuration unchanged. We make a ‘hole’ by removing one rapidity 0f{|A,| < B)
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from the ground-state distribution and create a ‘partiélg’outside the Fermi bounda.
For those excitations in the thermodynamic limit we deal with the following set of coupled
integral equations:

0 B 1
ps(A) = S2(A) + / dr” S1(h — A)ps (M) + / dA" S2(h — A)pe(A) + ZSz()» —Ap)
-0 -B

0 . (55)
pu) = [ @ $a(8 = 300.0) = 88~ A
-0
with the requirement
B O _ 1
/ dA pe(A) = (56)
B L
The ‘backflow’ distributiono (A, A) again obeys equation (35), but with
_ (¥ ( S2(h = Ap) )
Ve (wm) —5(A— Ap) 1)

Similarly to the spin excitations, we can express the charge excitation energy in terms of
the dressed energies:

2 Ao Ao

2
=Y | i fa(ta)ou(pta) + =Y | Oia calita)W, + 1

a=1"Y —da a=1"Y —aa

= —ea(Ap) +e2(Ap) >0 (58)

(equality holds forA, = A,). Clearly, the charge excitation is massless for any anisotropy.
The momentum of the excited states is given by

2 2
pP=-7 ;1 =7 U= 1) (mod 2r) (59)
which vyields, in the thermodynamic limit,

Ap
p=2r / "dA p%A)  (mod 20). (60)
Ay
As is the case for the isotropic case, we have additional branchegkat (kr = 7n,./2)

[8]. Here again we have a two-parameter family of the excitation. The charge excitation
spectrum for various fillings in the hyperbolic regioA & coshy with y = 2) is shown

in figure 6. The effective charge Fermi surfaces arekat 2Note that the continuum of
states disappears in the two limiting cages— 0, 1. In the low-density limit 8 = %7‘[,

or B — o0), we can only create a ‘particle’ at the Fermi boundar® and the spectrum
reduces to the one-parameter family of a hole. At half-filiBg= 0, on the other hand,
there is no room to make a ‘hole’ in th& distribution. Therefore, only the particle part
survives (A,| < 37, or |A,| < o).

4. Summary

We obtained the exact solution of the anisotropic supersymmetiic model in one
dimension. We determined the ground-state properties in relation to the anisotropy. For
A > 1, the ground-state (dt = 0) and the magnetic properties are just those of the %pin—
XXZchain (the X X X-chain in the isotropic limit). ForA < 1, on the other hand, we
found a continuous magnetic phase transition. The low-lying (spin and charge) excitation
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continuum is calculated for various electron fillings. We found that the charge excitations
are massless for any value of the anisotropy. Whether the spin excitations are massive or
massless depends on the anisotropy of the model. Remarkably, at half-filling (namely, for
the spin% XXZ-model), we identified the correct lowest (spin) excitation mode which has
previously not been known.
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